U.S. Measurement System

Imaging as a Biomarker: Standards for Change Measurements in Therapy

Breakout Area 4: Open Architecture & Software Tools: Image and Meta-data Collection and Analysis, Data Integration and Display

Day 2: Summary

"The Detailed Measurement Science & Standards Needs – The What by When and by Whom" Near, Mid-Term Issues Only

Chair, Lawrence Tarbox, PhD
Mallinckrodt Institute of Radiology
Washington University School of Medicine

A U.S. Measurement System Workshop September 14-15, 2006 National Institute of Standards and Technology

Measurement Needs

(From Yesterday)

Near Term

- 1. Management of Metadata and Ontologies
- 2. "Plug-in" or Service Oriented Architectures
- 3. Reference Implementations

Mid Term

- 1. Management of Metadata and Ontologies
- 2. System Quality Management
- 3. Interacting with Workflow Engines
- 4. Data Collection Protocol Management

Long Term

1. Automation of Processing

- Technology at Issue: Management of Data Collection Quality Control
 - "Data Collection Quality Control" includes not just the measurement system, but how the measurement system was used.
 - Also may include the analysis of the collected data
- 2. Submitter(s): Participants of Breakout Area 1
- 3. Technological Innovation at Stake:
 - Mechanism to move fundamental quality checks to scan time, giving immediate feedback to technologists and researchers
 - Mechanism for data collection centers to collect the QC measurements along with the measurement data
 - QC data must be in a machine-readable form
 - Analysis must be automated
- 4. Economic Significance of Innovation:
 - Immediate feedback and reduced variability may reduce the number of non-evaluable studies, thus reducing the number of subjects that must be enrolled to get statistically sound data

5. Technical Barrier to the Innovation:

- Resistance of manufacturers to sharing QC data getting access to the data needed for the QC assessment
- Criteria for QC for a given study generally provided by an off-site entity
- Architecture needs to be open, "plug-inable" QC, deployable to multiple sites with differing equipment
- Getting feedback to the operators, particular when the QC analysis is done off-site
- Must be easy to use, minimally disruptive

6. Stage of Innovation Where Barrier Appears:

- R&D (During equipment product feature specification & during product release
- End Use

- 7. Measurement-Problem Part of Technical Barrier.
 - Characterizing the instrumentation
 - Characterizing the drift
 - Characterizing the data collection
 - Interoperability of the data
- 8. Potential Solutions to Measurement Problem:
 - Common ontological framework
 - Method for describing the phantom
 - Method for automating the measurement
 - Method for automating the analysis of the measurements
 - Method for returning measurement results to the site, and incorporate corrections into the measurement process

- 9. Potential Providers of Solutions:
 - AAPM (Physicists)
 - Phantom Manufacturers (Physicists)
 - DICOM
 - Equipment and Software Manufacturers
 - CROs
- 10. What is the role for Government, if Any?:
 - Create appropriate measurements (phantom specification, acquisition setup, analysis, etc.)
 - Characterize and/or mandate particular measures
 - Manage ontology, cooperating internationally
 - Provide reference implementations of the collection, analysis, and dissemination architecture
 - Provide neutral archives (e.g., for tracking, for improving equipment)
 - Provide [secure] communications infrastructure
- 11.If There is a Government Role, Why Industry Says It Can't / Won't Pay for That Part of Solution:
 - No economic incentive to equipment manufacturers for providing such tracking

- Technology at Issue: Data collection protocol management, High and Low Level
- 2. Submitter(s): Participants of Breakout Area 1
- 3. Technological Innovation at Stake:
 - Ability to consistently produce measurable images at multiple sites with differing equipment that has similar capabilities
- 4. Economic Significance of Innovation:
 - More consistent data collection, reducing variability, and thus reducing the number of participants needed to obtain statistically significant data

- 5. Technical Barrier to the Innovation:
 - Proprietary nature of how manufacturers control their measurement instruments
 - Variability in the capabilities of equipment
 - Variability in how different equipment accomplishes similar tasks
- 6. Stage of Innovation Where Barrier Appears:
 - R&D

7. Measurement-Problem Part of Technical Barrier.

- How to represent the low level settings in a vendor-neutral method?
- Consistent ontologies for describing acquisition and other data collection parameters
- Describing patient-prep, monitoring, etc.
- Automating measurements that require a feedback loop (i.e., data collection contingent on events during data collection)

8. Potential Solutions to Measurement Problem:

- Document distribution for the high level portion
- Sample scanner settings (one for each scanner type in the trial) for the low level settings for acquisition (scanner translates into the internal representation)
- "Plug-in" distribution for analysis methods needed by the protocol

9. Potential Providers of Solutions:

- UPICT
- NEMA/DICOM (for the standard mechanism for describing scanner settings)

10. What is the role for Government, if Any?:

- Archive for data collection protocols (e.g. NCI/NLM)
- Ontology management, coordinated internationally (e.g. NLM)
- Gap analysis are there units of measure that would be needed to characterize a data collection protocol, including acquisition parameters? (e.g. NIST)

11.If There is a Government Role, Why Industry Says It Can't / Won't Pay for That Part of Solution:

- Need a neutral third party
- Getting around the barrier of manufacturer proprietary information